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OUTLINE

Background: what is the current’status?

2 Motivation: why we.need this research?

B

3 Problem Description: what are key research problems?

« Feature'selection

« Statistic error analysis

« Credibility evaluation

- (Randomized learning
Methodology «— Online assessment

« Real-time assessment

« Missing data
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Back round B Power System Stability

Definition
M Otlvatlo n “The ability of an electric power system to regain a state of operating equilibrium after being subjected to a
disturbance.”
Conventional power grid = “Smart Grid”
Problem L _ _ _ _ Higher operating
. . « Generation side: high-level intermittent renewable energy integration A
descrlptlon ' _ _ o uncertainties
« Demand side: demand response, electric vehicle, distributed energy storage, etc. +
« Device-grid interface: power-electronics converters Compllcated_ >yt
M th d I . dynamics
etnodao ng Recent major blackout events

North America Blackout India Blackout

Very high wind power
penetration level (48%)

South Australia /
Blackout

o %> NANYANG
48 < TECHNOLOGICAL West Europe Blackout
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Backround B Classification‘for Power System Stability

» Rotor Angle Stability (large-disturbance and small-disturbance)

\Y/ otivation + \oltage Stability (short-term or long-term)
» Frequency Stability (short-term and long-term)

Problem x=f(x,y,p,)) 0=gkxyp2
description
B Classification for Stability Assessment and Control
MethOdOIQQy On-line Stability | | Preventive E Real-time Stability | | Emergency
Assessment Control : Assessment Control
! fime
Steady State Dynamic State
(pre-fault) Contingency (post-fault)
Accuracy, Speed, Knowledge Accuracy, Earliness, Robustness

3@ NANYANG ‘ l

LEI%?ROSI#\?ICAL the faster, the more faults can be assessed the earlier, thé more time is left for control
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Backgrou 2lsB B Conventional'Methods (Model-based)

« Time-domain Simulation: to solve a large-scale differential-algebraic equation (DAE) set
Motivati on « Data requirement: system model (static and dynamic), network topology, state-estimation, fault, etc.
« Outputs: system’s time-varying trajectories

« Event-based control: lookup decision table, contingency indexing

Problem
“for a 14,000-bus system, one disturbance analysis could involve a set of 15,000 differential equations,and)40,000 nonlinear algebraic

d escCri ptlo n equations for an simulation time duration of 10-20s; besides, the number of disturbances to be considered is also enormous, e.g., for the
14,000-bus system, the typical number of postulated disturbances is between 2000 and 3000.”

M t h d I » . Y A Mumber of nodes Desired time step | 500 ¢ T T 3 T 3 T 3 T
e o O ( g y @ . [Transient stability sirnukatinnl 1-10rms
3
@ 1000 of very large networks 400 - I ‘A
el y
; L T stability lost after 1.3s ——> :
o \ <100us
a N, \ networks
= Lines of cowsto 100 300 - -
2 mmputmgpm\\er‘\\. ERAT simulation of small <20us ’g
_E e networks and switching ckts 5
. D
E 101 (T EMT simulation of igh ) | .. S 299" faultoccurs at 0.2s
frequency circuits Sl =
L I " o
S 100
Time steps per second %
o
Farliness 0
Te(n-1) Te(n) s Te(n+l)
Execution time T, #=rfa========== L SEEEELEE s SECELES TR Y--»t -100
Real-time clock —4 - + —> 1 I
tay t, | # tae2 -200 . . . . . - -
(a) \ Time (s) J
SO A o Te(n-1) g S Teln) V
&> NANYANG dl) je=y Telo)

Real-time clock t t t { L 5

gﬁ LEI%'E'ROSLI%? ICAL b A L I N L PSS/E simulation costs 2.2s CPU time
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B Data-Driven Method

Off-line

On-line

Stability Information
Database

Historical archives

Real-time System
Measurements

Off-Line Simulation

l

!

.
I
I
I
I
I
I
I
Classifier/Predictor —T
I
I
I
I
I
I

Input-Output
Specification l
1 \ Stability Assessment | |

Results

—»  Automatic Lear

"

l

{

Other Relevant

Knowledge r}

Decision Making

WAMS

Control
Center

PDC PDC

PMU PMU

Physical Operation
& Control Layer

Z2.Y.Dong, Y. Xu, P. Zhang, and K.P. Wong “Using intelligent system to assess an electric

power system’s real-time stability,” IEEE Intelligent Systems Magazine, 2013.

Computation Data
Application Architecture Collection
Data-Analytics
Layer
Preventive/emergency
controls
|
[ | |
Load or
2 Syst Re-
[ gsehneedrgit;%n sega?r:trirtl)n ] {dispaﬁ:hing}
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Key Research:Problems (how to?)

» Generate a comprehensive stability database

» Improve the accuracy, speed, and reliability

» ~Select/extract significant features

» Develop effective data-analytics algorithms

« Extract interpretable knowledge to support stability control * Update the model timely and efficiently

 Mitigate abnormal situations, such as missing data, communication delay

« Adapt the trained model to unforeseen scenarios, e.g., unexpected fault, topology, etc.

Working institutes

Key Funders

L&
) Lo &
2008- ) /? ﬁ 1z ? # &
2011 South China University of Technolo ” ¥
Development Implementation . & NSFC
Input & Output
variables Results utilization
ZQ\ THEHONG KONG
2000 | QY PorvTiCHNICUivirsTy PR | b,
o 2011 T KB
Database Misclassification
Generation problems
8
Intelligent Stability THE UNIVERSITY OF
Assessment NEWCASTLE
AUSTRALIA
2011-
Significant Model Updating
Feature Selection e =N THE UNIVERSITY OF
2ty SYDNEY
Application
Philosophy
[ROLLS]
®
1 NANYANG RO"S'Royce
2016- TECHNOLOGICAL ,
now UNIVERSITY MlnlsthgLEgLécatmn

Z2.Y. Dong, Y. Xu, P. Zhang, and K.P. Wong “Using intelligent system to assess an
electric power system’s real-time stability,” IEEE Intelligent Systems Magazine, 2013.
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Background
Motivation

Problem
description

Methodology

Feature selection
Statistic error analysis
Credibility evaluation
Randomized learning
Online assessment
Real-time assessment
Missing data

Transfer learning
Model updating
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B Distance-based Feature Evaluation and Residual’Analysis

 Evaluate the quality of features according to how well their values
distinguish among instances near each other; Consider both the
difference 1n features’ values and classes, as well as the distance
between the instances; Good features can cluster similar instances
and separate dissimilar ones in the distance space.

F diff (X,R,R")

A

k

_ |value(X,R) —value(X,R)|
B max(X)—min(X)

WIX]T™ =W[X] = > diff (X,R,H ;) /(m-k) +

=1

PC) -Zk:diff(X,Ri,Mj(C))]/(mok)

[
~ C#C%S:(Ri) 1-P(class(R)) =

* Residual: the difference between an event’s observed (actual)

occurrence probability and expected occurrence probability.
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Y. Xu, et al, “Preventive dynamic security control of power systems based on pattern discovery technique,” IEEE Trans. Power Systems, 2012.



Backg round B Statistical Error Analysis

» The essence of statistical learning is to fit the historical distribution of a database, and assumes that

M otlvatlon the future unknown data follows this distribution.
« Error may stem from 1) imperfect fitting and 2) variation of data distribution
« How to convert a numeric value to a class label? @
Problem Stable

descrlptlon . {y>0 — y =1 (stable) ﬁ ﬁ
y<0 — y=-1(unstable) Decision (A
Methodol boundery A
)
ethodology A o » N IL a1
Feat.ur.e selection . 5| C | Unstable zs MostoT hedl
Statistic error analysis 5" Slassification decisions arenear the
Credibility evaluation 8 0,005 | \> boundary
o ° o
Randomized learning
Onlme. assessment %2 5. 4 05 0o o5 1 15 2 580
Real-time assessment DSA Pfed'("“;” Festlis 2 60
° o a

Missing data 0.02 . . £
Transfer learning 50015 Wrong §
Model updating g oo classification 20

8 O "]

SRO00R 2 15 4. .05 0 0.5 1 1.5 2
0t NANYANG Misclassified OPs DSA Regression Result Range

o

- Y (&

L!'E\ICII\II'Ié\IRosl#gICAL 2 51 O O NN RS2 B Correctly Classified OPs
9

Y. Zhang, Y. Xu*, et al, “Intelligent early-warning of power system dynamic insecurity risk towards optimal accuracy-efficiency tradeoff,” IEEE Trans. Industrial Informatics, 2017.
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Problem
description

Methodology

Feature selection
Statistic error analysis
Credibility evaluation
Randomized learning
Online assessment
Real-time assessment
Missing data

Transfer learning
Model updating
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B Credibility-Oriented Stability Assessment

Ensemble Learning

Training

Combine a set of individual
learners to make a plurality

decision

«_Single learners can
compensate for each others,
and the whole model can
reduce aggregated variance

Credible Evaluation

» Evaluate an individual
decision’s “credibility”
based on the difference
between the observed value
and the expect value

» Evaluate the whole
decision’s “credibility” based
on the consistence of the
individual members

« Only implement “credible”
stability results in practice

Y. Xu, etal, “A

Randomly sampling Database (DB)

— V b >
DB 1 DB 2 DB 3 DBE

For each single ELM, randomly select input features, hidden

node number, and activation function

! L L

L

Training E single ELMs
(randomly select input weights and analytically determine the

output weights)

If we are unable to avoid errors, can we identify them?

T

o

Appllcatlon

mput

|nput

|nput

|nput

-

I
"fp (‘ S
3

Lof®
\“d\“"

wa1sAs juabi|@1u|

[ Decision-making rule }

DSA
results

Credibility
estimation

_/"\\ Output Distribution

] Credible Outputs
Incredible Outputs

TN

lb, -1 ub, Iby 1  ubs
area . :
: <r =Y iscredible
area + area

otherwise, Y is incredible

If

incredible outputs, s of them generating stable outputs, and u

y €[lb;,ub,]= y =1 (stable)
y €[lb,,ub,]= y = -1 (unstable)

y € (ub,, Ibg)or(—eo, Ib, )or(ub,,+w) = y =0
(incredible output)

For E single learning units, suppose m of them generating

of them generating unstable outputs:
If M/E>r =Y =0 (incredible ensemble result)

Else If {

s>u =Y =1 (secure instance)

s <u =Y =-1(risky instance)

reliable intelligent system for real-time dynamic security assessment of power systems,”

IEEE Trans. Power Systems, 2012,
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Background B Randomized Algorithms for Ensemble Learning

Motivation Keys to Ensemble Learning Extreme Learning Machine (ELM)

e Diversity (data, model structure and parameter _ s _ S
) y( | P ) fN(xj)_Z,Bi-.9(Wi-xj+bi)—tj, j=12,...,N
. Learning and tuning speed =L

Problem
. . Randomly selecting the input weights and biases
descri ptlon for input weights and bias, w and b, and

Analytically determining the output weights g

Methodology

Feat.u r.e selection . A 15 B, Eleatturg learning ~. ~.

Statistic error analysis I e e B e o oo

Credibility evaluation s ek O Y R '."0..'4 % '&.

Ra n.domlzed Iearnlng Hidden nodes need not be §§§§§§§§§§ y = % Il ’ % Oulid ...~'Q
Online assessment el | e e i sosgeces % % S0
Real-time assessment LM can boa subnctwegt ) .0:.‘0

M i SSi n g d ata ) d Input Nodes .~ ELM Feature Mapping .~ ELM Feature Mapping m Output Nodes
Tra nSfer Iea n i ng ELM Feature Mapping ~ ELM Feature Mapping / Representation ELM Learning

Model updating
Other randomized learning techniques:
& NANYANG : :

v TECHNOLOGICAL random vector functional link (RVFL)

Stochastic Configured Network (SCN) 11
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Problem
description

Methodology

Feature selection
Statistic error analysis
Credibility evaluation
Randomized learning
Online assessment
Real-time assessment
Missing data

Transfer learning
Model updating
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B Pre-fault Online Stability Assessment/Contingency Filtering

|EEE 145-bus System Test Results China Southern Power Grid Equivalent System
(Transient Stability Assessment) (CCT Estimation)
Contingency Credibility  Acgetragy Contingency Credibility MAE
Fault at bus #1, tripping line 1-6 89.25%  /100% \ Fault at a 500kV corridor bus 96.82%  (0.0115s )
T~

Fault at bus #2, tripping line 2-6 91.54% [ 100%

" Fault at bus #6, tripping line 6-10  94.64%
Fault at bus #89, tripping line 89-76  94.48%
T Average 92.48%

The “credible’ decisions are ‘
highly (100%) accurate

P .

High accuracy can be obtained on the cost of credibility rate.
If combined with T-D'simulation: with 100% accuracy, 16 times faster than pure T-D simulation

— ™~

4
4
95 —4— Accuracy (%) - 90 P
P ~— & Credibility rate (%) i
% P 80 o —4— Accuracy (%)
A A —&— Credibility rate (%)
85 70t . - i ; :
500 1000 1500 2000 2500 , 3000 3500 4000 4500 5000 300 270 240 210 180 150 120 90 60 30
12

Y. Xu, etal, “A reliable intelligent system for real-time dynamic security assessment of power systems,” IEEE Trans. Power Systems, 2012.
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Feature selection
Statistic error analysis
Credibility evaluation
Randomized learning
Online assessment
Real-time assessment
Missing data

Transfer learning
Model updating
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B Optimal Accuracy-Efficiency Trade-off

Multi-objective Optimization

» The parameters involved in the credible decision-making rule are

user-defined. They can be further optimized.

« Optimally balance the tradeoff between stability assessment

accuracy (A) and efficiency (C).

-98.2

-98.4

-98.6 |

988 %
-99.0 £

-99.2

Accuracy (%)

Pareto solutions

-1 -98

Objectives: Minq(x) = —p(x)
X

where, x=[lb,,ub,,lbg,ubg,r];
no. of credible results

P(X) =[C, Al =[py(x), p2(X)]

-96 -94 -92 -90 -88

Credibility (%)

O POF
O  Testing Result

-96 -94 -92
Credibility (%)

1.8 min —, 15 times faster than

pure T-D simulation

Effciency o« C = — x100% =
no. of testing instances <
f tly classified instances g
no. of correc ©
A= A< x100% 5
no. of credible results 2
. U+S
subjectto: b, <U; U <uby <
U+S ' |
<lbsg <S; ubg >S; 0<r<1 -
. Testing Performance Average Computation Time
Pareto Points — : i
Credibility Accuracy ELM Ensemble T-D Simulation Overall
A 92.82% 99.9% 11.7 min
B 92.47% 99.95% 13.3 min 13.4 min
- C 92.02% 99. 5.12s 15 min ~ 15.1 min
D 90.39% 100% 183min -~ 18.4min
E 88.66% 100% 21.1 min . 21.2min

13

Y. Zhang, Y. Xu*, et al, “Intelligent early-warning of power system dynamic insecurity risk towards optimal accuracy-efficiency tradeoff,” IEEE Trans. Industrial Informatics, 2017.



Backg round B Post-Fault Real-Time Stability Assessment

Response-based stability assessment and control Predictors
Motivation - More robust, accurate, and generalized  X(T) ——>
Time series of < Xy(T) ———»
* Decision speed: the time-window length Vel :
_ Xi(Tm) —— >
(™ Xo(Ty) —————>
P ro b I e m 1000 ; ; ; ; ; ; Ti\,/-,;\?i :&reie;;f B XzETzi Stability status
descri pt ion 800 - Post-fault __, Stability /A | xlTm) RO US> ¥
trajectories prediction
600 [~ ¢ ey, ]

Xn(Ty) —— P

Time series of Xn(T2) ——— P
variable #n :

400

Methodology

Xn(Tm) —>

4 GPS
| : a L. Satellite
SPC 2 Y @ DS \

200

Feature selection
Statistic error analysis 0
Credibility evaluation
Randomized learning
Online assessment 400 | el
. 0 0.5 1.0 1.5 T 2.0 2.5 3.0

Real-time assessment T T Time (s)

. . Fault Observation Prediction
MISSIng data . duration window window
Transfer learning

Model updating « slower decision speed = more dynamic information
-> tends to be more accurate - less time for control

Rotor angle (deg)

-200

&g ¥£ggﬁ§fwlc AL « faster decision speed > less dynamic information -

UNIVERSITY tends to be less accurate = more time for control




Backgrou nd B Time-Adaptive Method for Generalized Time-Series Decision-Making Problems

Adaptively (in time domain) make decisions based on the output credibility

Motivation

Provide an accurate decision at an appropriate earlier time

Balance the assessment accuracy and the decision speed

Problem Real-time measurements
description

Fault duration time | Post-fault time

window | window .
Maximum allowable

decision-making time

T

Fault inception |

é To| i
1

T,

. | -

) >
MIM Input 1 Input 2 Input i Input n
Feature selection * * * ‘
Statistic error analysis Fault cleared at To

og_cpe ° ELM-based ELM-based | = ELM-based ensemble | ELM-based ensemble
Credlblllty evaluatlon ensemble classifier 1 ensemble classifier 2 o classifier i » classifier n
Ran.domlzed Iearnlng out‘put out‘put out‘put out‘put
Online assessment no no no
Real-time assessment Credible?
_II\_/I|ssuf1g cIJIata : N X e
ransrer iearnin
Model updating
&> NANYANG Emgrgency control Em_ergency control Em_ergency control Em_ergency control
TECHNOLOGICAL (if necessary) (if necessary) (if necessary) (if necessary)
15

R. Zhang, Y. Xu, et al “Post-disturbance transient stability assessment of power systems by a self-adaptive intelligent system,” IET Gen. Trans. & Dist., 2015.




Background B Test Results

: : Accuracy
Literature Response time o
. Existing methods:

210 3s Fixed response time: 4 cycles-3s
Lor2s P o A
150 and 300ms

8 cycles 96%6~99.9%

6 cycles

5 cycles

4 cycles

Feature selection New England 39-bus system IEEE 50-machine system
Statistic error analysis e [
Credibility evaluation
Randomized learning
Online assessment

Real-time assessment

Motivation

Problem
description

Methodology

95 -

og - | I c(T)/500,% |
—l— A(T),% 90 -

Our method:
Adaptive response time:
average 1.9 cycles;

96 - ;] 85r

80

Missing data ol | average accuracy: 99.7%
Transfer learning T
Model updating .. I
65
ot NANYANG 90 ~ 60 :
o 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
( TECHNOLOGICAL Decision cycle Decision cycle

R. Zhang, Y. Xu, et al “Post-disturbance transient stability assessment of power systems by a self-adaptive intelligent system,” IET Gen. Trans. & Dist., 2015. 16




Backg round B The Short-Term Voltage Stability (STVS) Problem

The STVS problem is concerned on:
Motivation « Fault-induced delayed voltage recovery (FIDVR) — pose risk for wind turbine to ride through
 Sustained low voltage without recovery — may lead to voltage collapse in the long-term

Problem « Fast voltage collapse — usually associated with rotor-angle instability

description

POST-FAULT VOLTAGE

UNSTABLE

Methodology
R STABLE
Feature selection -

Statistic error analysis
Credibility evaluation
Randomized learning
Online assessment
Real-time assessment
Missing data

Transfer learning

. 0 0.5 1 Tin‘:é(s) 2 2.I5 3 0 0.I5 1 Tin}g(s) 2 2j5 3 0 0j5 1 Tinlés(s) 2 g d Timé (S)
MOdeI updatlng () (b) (c) (d)
S Fast Recovery FIDVR Sustained Low Voltage Fast Collapse
&8> NANYANG -
>384 TECHNOLOGICAL (satisfactory) (unacceptable) (unacceptable) (unacceptable)

Y. Zhang, Y. Xu, et al “A hierarchical self-adaptive data-analytics method for real-time power system short-term voltage stability assessment,” IEEE Trans. Ind. Infor.,]2618.




Backgrou nd B Short-Term Voltage Stability Indices
Index to evaluate voltage collapse :
\Y otivation « Transient Voltage Collapse Index (TVCI) —a binary index to decide whether or not the voltages are recovered

1.1

Indices to evaluate FIDVR severity : L~ -]
1) Transient Voltage Severity Index (TVSI) [a 9 ]
Problem ) g y (TVSI) [a] K\/\i

— a continuous index

o
w0

o
[e=]

Voltage (pu)

[ ] [ ) 1 \
desc rl ptlon — an averaged index over a|| bUSES 0.7n (\—7 threshold to define unacceptable woltage deviation |
— FIDVR severity is reflected by the magnitude and the duration :K aton
time Of VOItage dEViatlon P L period > considered transient time frame, T
0.4 r : ; r r r r r t
MethOdOIO A [a] Y. Xu, Z.Y. Dong, K. Meng, W.F. Yao, et al, “Multi-objective dynamic aderda T mew o
Feature selection VAR planning against short-term voltage instability using a decomposition- N <T
Statistic error analysis based evolutionary algorithm,” IEEE Trans. Power Systems, 2014. TVS| = Z._thz . TVDI;
Credibility evaluation N> (T -T)
Randomized learning - V(1) A |
Online assessment 2) Root mean_squarptd \oltage Severity Index (RVSI) [b] Vg /\ :
Real-time assessment — LT thie Wio -
Missing data — adopt root-mean squared average instead of arithmetic mean H\\’fz‘; 3
Transfer learning — ability to emphasize the buses with more severe voltage deviation — Bus1 A Vsl
Model updating — FIDVR severity is reflected by the area covered by voltage — B2 NI VShj)
deviation . RVSI =+/(vS1;2 +V51,%) /2 |

5 o 0 1o ]
&t NANYANG [b] Y. Zhang, Y. Xu, et al “A hierarchical self-adaptive data-analytics N (T 2

BSH IJIIE\I(I:\II-ISROSLI?$ S method for real-time power system short-term voltage stability assessment,” RVS| Zi=1(ITC TVDI;, dt)

) IEEE Trans. Ind. Infor., 2018. N N 18




Background
Motivation

Problem

B Hierarchical Time-Adaptive Method for Real-time'STVS Assessment

Hierarchical

— voltage instability detection (higher hierarchy) & FIDVR severity prediction (lower hierarchy)
— improve comprehensiveness of STVS assessment

« Time-Adaptive
— adaptively deliver assessment results based on progressively collected data

— provide an accurate result at the earliest opportunity
— optimally balance the assessment accuracy and speed

description

\oltage Instability Detection ~ FIDVR Severity Prediction

Methodology i NS - RM) ~ S(T)  AT) RT ST EM
ot PMU Data Collection Higher Hierarchy Lower Hierarchy 1087 761 100% 576 0 N/A

Feature selection Voltage T o T 1206 348  9982% 524 0 _ NA
Statistic error analysis Subsequences 1=\ ae? [ | Prediction 878 204  99.85% 637 0 N/A
Credibility evaluation between Tcand Ty | | ' 674 125 99.86% 660 0 N/A
: ! | YS | Not | s Not 549 199 99.70% 715 22 2.2%
Randomized Iearnlng o I Unstable | | sure RVSI sure B 350 49 99.70% 729 185 2.1%
Online assessment = Voltage O] No. RS 301 24 9971% 565 . 138 2.0%
. = Subsequences | —> . BN 9 99.71% 436 288 2.0%

- © : ? :

Real-time assessment 5| LbeweenTyandT, || AR Lpreddiond O BENEEE 268 11 9971% (156 74 2%
Missing data b i Yes isure i M6 isure 257 19 99.71% 97 25 2.0%

Transfer learning E ; [Umstable] ¥~ | [Rva ] e
. : 1 : : ! 09% 71 71 2.4%
Model updating J ‘ Notss Not o6 66 MK -

Voltage ‘
Unstable | No: RVSI
Subsequences N ot PN The number of available sampl
00 I 29, Voltage? | Prediction pIes.
a5 NANYANG between Ty, and Ty The number of successfully assessed samples.

TECHNOLOGICAL
UNIVERSITY

Yes
| Unstable |

. Zhang, Y. Xu, et al “A hierarchical self-adaptive data-analytics method for real-time power system short-term voltage stability assessment,” IEEE Trans. Ind. Infor., 2018.

€s

Y
[(RvSL ]

The accumulated accuracy.
The accumulated MAPE. 19



Probabilistic Time-Adaptive Method for Real-time FIDVR Assessment

Background

* Credibility-Oriented Time-Adaptive Method » Probabilistic Time-Adaptive Method
Motivation — credibility is evaluated according to the — predict FIDVR severity on a probabilistic
consistence among individual learners. basis with a certain confidence level
— a'large number of user-defined — non-parametric in nature
parameters to be tuned — more robust in practice
Problem
d T Comtine e |
Voltage | I
escrl ptlon N [ [ | sl A N Pr:c\ilifxlor |
=~ & E=———r | e HC;';%::LH |
. 4‘; Training |
| I I Ermor
Methodology i ; 1 s um | iy
| v [ \ 4 [ | v [
Feature SEIE tlon i Voltage I Voltage I I Voltage I : I
Statlstlc error analysis N Deviation 1 : Deviation 2 : : Deviation F : | :
e ene. : | v v v i .
Cl‘edlblhty evaluation Probabilistic | [ Probabilistic : Probabilistic : : Probabilistic : : “ Tgmg‘ ‘H/Tram RVFL E:l( '
Randomized Iearning Prediction } Predictor 1 | Predictor 2 | | Predictor F | I \ Set \ Ensemble / redictor :
. | v | v | | v ' LV T o
I I | I
Onlm(? assessment > i Clof TVSI I ClofTvsI S Clof TvsI ' ~ onine Abolication IS T T T T T T T T T~ |
Real-time assessment | ' o | ! P - predicted :
Missing data 1 Nof a8 | | e
Stopping | Meet Stopping ™\ / | | | | A
Transfer learning Criterion =t} ™\ Criteion? /' | ' ' ' ' S Tl Do HY) :
Model updating Ehee: | Ve | RN : : pediao o, Model | |
| Deliver Assessment || | Deliver Assessment | | || Deliver Assessment | | | T\r;?étgg?y Q Uncertainty ] | |
! Decision ' Decision ' ! Decision ' Snapshot EN [ predided | Total || |
: . } I | | | | \ m Error ) Prediction | | |
%43 NANYANG T T Y | | e | | |
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Y. Zhang, Y. Xu, et al “Real-time assessment of fault-induced delayed voltage recovery: a probabilistic self-adaptive data-driven method,” IEEE Trans. Smart Grid, 2018.



B Test Results
Confidence Intervals (CI)

51 N\~ 1.6 T
g O R Clatt1 14 ¢ ps
4r y SF (i Clatt10 1.2 4 <
) Pt & 3% |~ — —clatt19 o 30
23r § " % F \IE g . .
> ; e i i o8l i =\ The compased CI shrinks over time,
B / N o H R A - . .
I"z’ 2B L Fa %= 06 LS — indicating the reduction of prediction
1 Vi ok FF o iYL RERE 0.4 [f i errgrat.a later decision cycle
= F AT, E¥ AR AR A BN A 3
\‘.. ;‘l. > : 'l . ”' -:' :: “““ I‘ -": 0'2 _::
0 K 1 | - 1 1 1 * 1 "! 3 K 1 1 0 3 I | | I I}
5 10 15 20 25 30 35 40 45 50 40 41 42 43 44 45
Randomly Selected FIDVR Cases
Methodology
FIDVR Assessment Accuracy and Speed Comparative Study Results
Time | No. of Assessed | Assessment | Time [ No. of Assessed | Assessment
Points Cases Accuracy | Points Cases Accuracy Type Accuracy | Assessment Time
- I 0,
793 100% 13 100% Our Method se!f adaptlve 99.66% 0.14 s
o 3 fixed-time 99.05% 0.75s
88 100% 5 100% — ST T
Real-time assessment > 100% 8 2oL s ke —
39 100% 6 100% Self-adaptive ¥ 998
33 100% 3 100%
6 | 19 100% 2 100%
0 0
26 100% 1 100%
et 11 100% 2 100%
9 | 9 100% 0 N/A All 100% accuracy for early assessment,
5. 5r %% NANYANG 10 14 100% 20 31 87.10% indicating.the improved reliability in
LEI[I:H?ROSL#?CAL Overall Accuracy 99.66% Average Decision Time 0.14s time-adaptive method.
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Background B Data-Driven Method with Missing Data

The impacts of missing data:

Motivation + Incomplete input WAMS

* Fail to work

Problem « Deterioration of assessment accuracy

[ ] [ ) i i &w
descr|pt|on / PgLy(S:ICaI Olpfratlog&
ontrol Layer { oL } { oMU ][ PMU }
Computation Data N
MethOdOIO Application Architecture Collection Missing PMU malfunction
Feature selection oa

Lot : PDC failure
Statl.stl.c. error analySIS Data-Analytics Loss of communication
Credibility evaluation Layer Data congestion

Randomized learning Cyber attack

Online assessment
Real-time assessment Existing methods:
Missing data

Transfer learning
Model updating

 Surragate split for decision tree: T. Y. Guoj and J. V. Milanovic, “The effect of quality and availability of
measurement signals on accuracy of on-tine prediction of transient stability using.decision tree method,”
IEEE/PES ISGT Europe, 2013.

2 NANYANG * 'Random subspace-based decision tree ensemble: M. He, V. Vittal, “Online-dynamic security assessment with
' TECHNOLOGICAL missing PMU measurements: A data mining approach,” IEEE Trans. Power Syst., 2013.

UNIVERSITY . : .. :
Still suffer from low accuracy if the amount of missing data increases! 22




Background B Observability-Oriented PMU Clustering

) ) Observability: The grid region where the power system operating data can be measured.
M otivation Complete observability: The condition where the observability covers the whole power grid.

Incomplete observability: The condition where some of the operating data cannot be measured.

PrObIem Under missing data events, the observability will become incomplete, but the change in

descri ption observability can be complicated:
» The combined observability of multiple PMUs can be larger than just simply adding up their

own observability.

Methodolo * Loss of one PMU can impair the observability in an larger region than its own observability.

Feature selection

r— PMU1 r— PMU2 r=— Combined

Statistic error analysis — — Observability — — Observability — — Observability
Credibility evaluation | I::::::::: ____ I PMU1 Loss
. . 4 [Pand T
Randomized learning : G 'i I _i - @) 'i ! -
Online assessment | : :
Real-time assessment |
L3 L3 h. __ | | — cm— e
MlSSlng data T | _r_-,l | | ; | | o) 1 & | 3
Transfer learnin I I - —(C
9 - N @: ”'Jl | —©
I I

I I R ¢ Remaining
N . I

I
I
I
Model updating |
I
I
I
I

— | 5 | || Observability
S5 % NANYANG ' mmh 7 2 8 7

TECHNOLOGICAL MG ! _— _! - '@ ! _!' -
UNIVERSITY = __ = T B S AL S & D R | .



Background
Motivation

Problem
description

Methodology

Feature selection
Statistic error analysis
Credibility evaluation
Randomized learning
Online assessment
Real-time assessment
Missing data

Transfer learning
Model updating

% TECHNOLOGICAL

UNIVERSITY

Analytical PMU clustering

» An iterative searching process over all the electric

components.

* Search all the non-redundant PMU combinations that can

observe each electric component.

* Maximize the grid observability under any PMU loss

scenario — rigorously proved

* Minimize the number of PMU clusters — rigorously proved

Initialize a PMU cluster set P = ®

AsetB={b;,i=1-"
Ng} includes all buses

i=i+1

Initialize a temporary PM

U combinationset T; = @

Asorted set C = {c;, ]
=1--- 2"-1} includes
all PMU combination

4
i=1

- ]

j=j+1

—

b_

Yes

If any PMU combination in T;=¢;?
(Redundancy Check)

lNo

No

F1.

The union of the observability of each complete cluster in
P equals to the remaining observability of the grid.

If ¢j can observe b;?

F2. Upon F1 is satisfied, the number of clusters is minimized.
F1I proof: Fl 1s equivalent to: E; = Ep, Vd € C (1
where E, =0(d).E, = Umkep O(V(m, | d)) )
m, ifm, cd
where V(m, |d)= i 3)
@ otherwise

In (1) - (3), O(+) 1s the function to map a set of PMUs to their
observability; d is the set of available PMUs; C includes all
PMU combinations; mg is a PMU cluster in P and the condition
m; C d means my remains complete with only d in the system.

7 e; € E1 = O(d), at least one non-redundant subset d; = d
satisfies ¢; € O(V(d; | d)). Since R; includes all non-redundant
PMU clusters fore;, ds ERiCcP. thuses EE:=> E1 Cc Ey. Ve
€ E, at least a m; € P satisfies ¢; € O(m;) and me = d, so ¢; €
Od)=E; = E:cE; AsE;cE;and E,cE;, E; =E,= FI.

lYes

Y. Zhang, Y. Xu, et al “Robust ensemble data-analytics for incomplete PMU measurement-based power system stability assessment,” |IEEE Trans. Power Syst., 2017.

F2 proof: we make a hypothesis H: there is a PMU cluster
m, that can be removed from P and P \ m, still satisfies (1).

Let d =m,, s € E1 = O(m,), and m, € Rj. As the clusters in
R} are non-redundant, all the clusters in R; \ m, include at least
one PMU that isnotin mg, so mu @ d,V my € Ry \my. As Ry
includes all clusters observing es, P \ Ry cannot observe ep, thus

O(V(my, lm,))=¢. Ym,, eR,\m,
e, 20(V(my, |lm,)),Vm,;, e P\R,
Ym;€EP \my= ep 2 E2= E1 # E». Thus, H fails = F2.

= e, 2 O(V(m, | m,)),

T,=Tp Cj

I1fj =217 [NO
Yes

1fi=Ng? FN2

Z=
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Background B Robust Data-Driven Method against Missing Data

At Offline Stage: Advantages:
Motivation * Use the observability of each PMU cluster to train » The remaining observability is fully captured by
each single learning unit. the ensemble learning model.
» Aggregate the single learning units in an ensemble « Sustain DSA accuracy under missing data
Problem learning model. conditions.
1 1 At Online Stage: * Minimum number of single learning models to
dESCI"I ptlon achieve the robustness (i.e. minimum offline

* Only the available single learning units (i.e. complete

input data) generate DSA decisions. training and online computation burden).

Methodology

- Analytical PMU clustering,+ Ensemble Learning = Robusthess against missing data
Feature selection

Statistic error analysis Offtine s CIUPSZ'ES ) rain Eﬁgrg‘e“;'e
Credlblllty evaluation Locations —>| Observability 1 '—L\—»
Randomized learning »| Cluster2 || Observability 2 }—,’—“—>
Online assessment Grid ; ; L :
Real-time assessment Topoloy | Cluster Na {~+——»{ Observability Na !—\rj’—>
Missing data
Transfer Iearr'ung Online 5 Nmolets v aggregate
Model updating % Available Measurement,i Available > Output1- [

PMU | | Ensemble / Classifiers Clas:sifierl : \|[\|gt Final SA

@2 NANYANG Stetws |+ [ Mode \adyilie Availab N | Deslslon
TECHNOLOGICAL  Clasifiers | Clasifier Ny | | |- C1tPUt N {

% UNIVERSITY .

Y. Zhang, Y. Xu, et al “Robust ensemble data-analytics for incomplete PMU measurement-based power system stability assessment,” |IEEE Trans. Power Syst., 2017.




Background B Test Results

@ ELM as the learning algorithm

o o %30 A\ N DTWS — decision tree with surrogate split
Motivation _ehlos

100 gmm=gr===go===gmoooamoos B8 g 6 g g TTmomm=—sy
=] ) ~ % S < < -,-f------_--------_----“-—-El-;-o_u-r method for 8 PMUs
A e 90 |- = S ——&— our method for 13 PMUs
1 : § 85 ,7\51\ o~ ~oo ‘ —o— DTWS for 8 PMUs
PrObIem ~39 5 / > ~ e —o— DTWS for 13 PMUs
8 80 B I, =~ | . N © —
d . . < 75+ 7 W= o= [
escription ol / ~o _
T4 4 T
65 Al 1 I 1 1 1 1 I 1 I 1 ®
_l— o /1 2 3 4. .5 6 7 8 9 10 11 12
5 7 Number of Missing PMUs
Methodology il BT Our /
_— - 7_T 11 1 method J Decision Tre_e.as the Iea.rning algorithm
Feature selection | . DTWS — decision tree with surrogate split
Statistic error analysis 8— "¢ RFSS—random forest with surrogate split
Credibility evaluation Robust DSA
. . @ PMU Placement 1: & PMU Placement 2: for Contingency 1
Ra n.dom'zed learning Bl it 1B offoct 13 PMUs without Z B effect Robust DSA
Online assessment resulting in 19 PMU clusters: resulting in 36 PMU clusters: for Contingency 2
{3},{8},{10},{16},{20},{23},{25}, 12}{6}.{9},{10}{11},{14},{17}{ - Fothsttl?SA .
or Contingency

Real-time assessment (200 (383.(3.16} 16,25} (16,001  19%.{20}.{22}{23}.{25}.{29} {2.9

Missing data 16,23}.43.8,10}.43.8,25}.{3,10,16},  »-{2.14},{2,17}.{2,29},{6,9}.{6,14
Transfer Iearning {3,16,25},{3,16,29},{3,16,25,29}  »{10,11},{11,14},{14,17},{14,19},

DTWS Method
for Contingency 1
DTWS Method
for Contingency 2
~ DTWS Method
for Contingency 3
RFWS Method
for Contingency 1
RFWS Method
for Contingency 2

{17,20},{17,22},{17,23},{17,25}4

M odel u pdati ng 17,29},{19,22},{19,23},{2,6,14},{2
,14,17},{2,17,29},{17,25,29},{14,1

7.19.22.23%.{14.17.20.22.23}

DSA Accuracy (%)

&> NANYANG ) . _
TECHNOLOGICAL Y. Zhang, Y. Xu, et al “Robust ensemble data-analytics for incomplete PMU

measurement-based power system stability assessment,” IEEE Trans. Power Syst., 2017.

% UNIVERSITY Y. Zhang, Y. Xu, et al “Robust classification model for PMU-based on-line power system 0 1 2 & < e g 7 _ _RF Method

Number of Missing PMU for Contingency 3

dynamic security assessment with missing data,” IET Gen. Trans. & Dist., 2017.




Background
Motivation

Problem
description

Methodology

Feature selection
Statistic error analysis
Credibility evaluation
Randomized learning
Online assessment
Real-time assessment
Missing data

Transfer learning
Model updating
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B Generative Adversarial Network (GAN)-based method

DS, N, B — Advantages:

Historical Samples

* GAN is implemented with two deep neural
networks without the need to fit an existing
explicit model, called generator and
discriminator, which contest with each other in
a zero-sum game framework.

N~

Prediction
Probability

with True Label [ |
—_— ‘ Combine Discriminated | | Train for Discrimination
Generated Samples Samples

with False Label

Noise

 Generate the missing data without depending
on PMU observability and network topologies.

\

/|
I Z , .
W| ¢ | || Generate Data Generated Train with True Label
o Samples
R
o \y o

Generator

Generative Adversarial Network + Hybrid Ensemble Learning™=> GAN against missing data

T = = = QT B, - T T TR ~_ At Offline Stage:

i @toricalPMU Database v Real-time PMU Measurement y i . .

i Co=J==== i | — |+ DSA model is the classifier based on hybrid

i i N1 || No ). ! ensemble learning model of ELM and RVFL.
| DSA Model " GANModel - L GAN Model | ) )

| Hybrid Ensemble : R e e '« GAN model can collectively provide an

- (m+n=E) > | " [ — ! ' issi

: = |_1$:te | | accurate complete data set against missing data.
i [ —=% l L ASSE ' At Online Stage:

. Input—>| I Generated Predlct.lc_)n | | - I

I 5 Data Probability ||1 | - | Final DSA Result | - - -

i AT = 1] ; I« Fill up the missing data by GAN model, the

: e i~ 1+ [ Adtivate Preventive Control || complete input data can generate DSA
Sl OEETRS _ 2\ _online Application ./ decisions by DSA model.

27
C.Ren, Y. Xu “A Fully Data-Driven Method based on Generative Adversarial Networks for Power System Dynamic Security Assessment with Missing Data,” IEEE Trans. Power Syst., 2019.



Background B Test Results

100% ————— K- - - K--- koo r— 2 100x""* ----- €} Kem - - X--- - X - R
S 95 2 1S 95F ,
° ) - N s, - e
Motivation :
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= Ty = EEEEE ) Tk Erare) s 1
< B, <
w 80— +— L T v 80} .
[a) L ) - T
..,
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r o e m Number of Missing PMU Number of Missing PMU
(a) Average 10 Faults (b) Fault1

d esc ri ptio n ID DTWS —4&—  Proposed Method - %~ - Robust RVFL |
¥F---- % ---- T A TN 100£____;< ————— = ———-i-ﬁ__ﬁ__f_:iﬁ?______&

iy
I
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4 1
]

= 95 _ = 95F ..
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< 90} ’ g oo T
) | % i T :5:
Methodology L] e sl S
Feature selection % sof Toog {5 80} gy - Our method:
= = orror 2 - | ! i . f=oEe L - ! | i ! e - S o o
gtatcll's;[?' N ?nal'ySI : "o 1 ? Number of Missinig PMU” ° 7 "o ! 2 Nutitber of Missing PMU” ® ! Higher ageaxly and
umoer o l1ssimg TINDET O 1551Ng g
redibility eva uat!on 3o *2) Fault 1 lower comput'at/ona/
Ra n.d om Ized Iea rnin g Fig. 6. DSA testing results of proposed method, robust RVFL ensemble and DTWS under the PMU placement option I. comp lexi ty
On li he assessment (a) average 10 faults, (b) fault 1, (c) fault 5, (d) fault 10
Real-time assessment ADAI RESULTS AND COMPUTATIONAL EFFICIENCY OF DIFFERENT METHODS
M ISSIng data ) Computational Efficiency ADAIL
Transfer learning Method (No. of Classifiers) ’
Model updating PMU Option T PMU OptionTI  PMU OptionT  PMU Option IT
Proposed Method 1 1 99.40% 99.04%
— — Robust Ensemble Learning [6] 19 36 98.48% 97.96%
0, 1 B9, £
5@ % NANYANG DTWS Method [4] 1 1 83.28% 80.81%
TECHNOLOGICAL Feature Estimation [7] 255 8191 96.99% 96.12%
UNIVERSITY 28

C. Ren, Y. Xu “A Fully Data-Driven Method based on Generative Adversarial Networks for Power System Dynamic Security Assessment with Missing Data,” IEEE Trans. Power Syst., 2019.



Background B Transfer Learning: Using One Model to Assess Many Unlearned Faults

Historical DSA Real-time Measurement
Database (Power Generation, Load Demand,
Bus Voltage Magnitudes

Trained Fault ?
Yes

No

Problems:

Motivation

* For pre-fault DSA, one model is trained for one fault

Feature Selectlon

v

Source Domain

* Only a limited number of faults are considered.

Problem
description

Target Domain  For online application, untrained faults may happen.

* How to use one model to assess many unlearned
faults?

Labeled Training Data
(Known Fault Condition)

Unlabeled Testing Data
(Unforeseen Fault Condition)

Y

Feature Transformation

Maximum Mean Discrepancy (MMD):

Methodology

Y

I
I
I
I
I
j
I
I
I
DSA Model |
|
I
I
I
I
I
I
I
I

* Measure the difference between different data

I
I
I
I
I
I
I
I
I
\ 4 |
I
I
I
I
I
I
I
I
I

Feature selection PRI
Statistic err Ivsi Transfer Learning distributions.

atistic error analysis Hybrid Ensemble IS )

ibili i ¥ v Slliimize Distribution Feature transformation:

redibility evaluation ELM RVFL
Ran.domlzed Iearnlng | Marginal | Conditional « Minimize the difference of the marginal
Online assessment Classifier v distribution and conditional distribution between
Real-time assessment i~ »  DSAModel [« the target domain and source domain.
Missing data :
T fg | . Predictor B Byproduct:

ranster iearning Final DSA Result _ ‘
Model updating 1  The correla_tlon between different faults can be

v PN ontral revealed, different faults can be aggregated as one.

& et NANYANG Offline _ S-online P

TECHNOLOGICAL o e / —
UNIVERSITY

2
C. Ren, Y. Xu “Transfer Learning-Based Power System Online Dynamic Security Assessment: Using One Model to Assess Many Unlearned Faults,” IEEE Trans. Power Syst., 2019.



Background B Transfer Learning: Using One Model to Assess Many Unlearned Faults

Testing Results

IVI Otlvatlo n 1DD|-Fa.uIt1 EjFaultz -Fault3 I Fault 4 [ Fault 5 [ Fault 6 -Fault'f I:IFauItS| 1M|-Faull1 [ JFault 2 0 Fault 3 [lFauit4 [N Fault 5 [ Fault& [ |Fault7 [ |Fault 8 |

sl 4 Foesf ]

> 1 3 I 1

Problem | | Ew i | z

° ° S B 3 S [ I 3

< 94 [ ) o 94 .

description ; \ | ‘ L ;

92 92
F1=> F2 == F3=> F4 => F5 => F6 => F7 => FS => =>F1 == F2 =>F3 =>F4 =>F5 == F6 ==F7 =>F8
(a) each of fault is transferred to the remaining 7 faults (b) each of 7 faulfs is transferred to the remaining 1 fault

MethOdOIO 100%
— AVERAGE ACCURACY OF DIFFERENT anch
Feature selection M Kén
Statistic error analysis ETRQPS | 99.0%
Credibility evaluation Average (1 98.5%
Randomized learning Method A 98.0%
Online assessment ccuracy 97 5%
Real-time assessment Original DSA Model 22 250 o7 o0
T . . . 0 ——
Missing data without Transfer Learning By
Transfer learning 7
Model updating Proposed method 97.27% 96.0%
e g5 59,

F1 F2 F3 F4 F5 F6 F7 F8
&4t NANYANG

TECHNOLOGICAL Mutual Transfer Accuracy Matrix
% UNIVERSITY i,

C. Ren, Y. Xu “Transfer Learning-Based Power System Online Dynamic Security Assessment: Using One Model to Assess Many Unlearned Faults,” IEEE Trans. Power Syst., 2019.




Background B Incremental Learning: To Update the Model in Real-time

P ¢\ N - ,m e — == £) . i
Motivation | [Miistorical L o Online | ‘-
1V ] , Historical DSA . : Real-time DSA | Update | :

| Database | | Measurement : :’"'}" Updating Model |

i C : I 3 Incremental l
P ro b I em | ________ E | |Learning Conditions| |

o o : | .| Enhancement |

description | [ L1 Frdbod sodes | |

| Broad Learning | |

! - OR

| Classifi | |

ssifier > Features
Methodology i | |
Feature selection | OR | OR |
Statistic error analysis . PrediStar ||| New Training | | |
Credibility evaluation I T[] Instances
Randomized learning | | . | |
i : ine Trainin : . nline / ication | nline atin

Online assessment . Offline Training Online Application | | Online Updating |
Real-time assessment [EEEEEEREFINE PP — N Y — < —_— === -
Missing data
Transfer learning  For practical application, the stability assessment model’s accuracy can not always be guaranteed
Model updating « Model updating is always needed to maintain and/or enhance the accuracy

 Traditional model updating is achieved by re-training, which is however, time-consuming.

&8> NANYANG

IJIIE\I(I:\II-IEIROSLI??CAL » This work proposes an incremental broad learning method which can achieve real-time updating.

C.Ren and Y. Xu*, “Incremental Broad Learning for Real-Time Updating of Data-Driven Power System Dynamic Security Assessment Models,” IET Gen. Trans. & Dist., 2020.
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B Incremental Learning: To Update the Model in Real-time

e s b b o e s e o o wmm  mmm  mmm  mmm  mm— m

Fig. 1 Different structure of the incremental broad learning for
(a) Increment of enhancement hidden nodes. (b) Increment of features. (¢) Increment of enhancement hidden nodes. features. and new training instances

00.9-/00.0!

g’o"o"fo“;

Hidden Nodes

sl I

- m

- H I
Enhancement -
Hidden Nodes |

Method Number of Number of Number of Testing Accumulative  Accumulative

fraining instances enhancement  accuracy, % training times, s testing times, s
nodes

basic case 400 0.3212 0.0474

increment of enhancement 200 — 400 0.5806 0.0817

nodes (Algorithm 1 (Fig. 2)) 304

increment of features 80 — 240 200 — 400 0.7587 0.0836

(Algorithm 2 (Fig. 3)) ' (20 +30) x 4

increment of input instances 2000 — 8000 200 — 400 0.4035 0.0673

& feature nodes &

enhancement nodes
(Algorithm 3 (Fig. 4))

80 — 240

(20 + 30) x 4

C.Ren and Y. Xu*, “Incremental Broad Learning for Real-Time Updating of Data-Driven Power System Dynamic Security Assessment Models,” IET Gen. Trans. & Dist., 2020.
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